Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Taxonomic discussions often permeate the broader scientific community slowly, yet they may hold more relevance than typically assumed. In many zooplankton groups, identification issues arise from cryptic species complexes, increasingly revealed by molecular approaches, and from groups with high morphological similarity. These challenges can lead to substantial uncertainties in species-level identification, questioning whether the expected species are truly covered and whether those sharing names across ecosystems are indeed distinct entities. This review provides a condensed overview on identification challenges of key species in the ICES zooplankton time series from the North Atlantic and adjacent seas. Examples are given across all relevant groups, including copepods, gelatinous plankton, and meroplanktonic larvae. The high prevalence of challenging species complexes underscores the need to further explore the implications of an accurate species assignment for understanding what defines a species’ role in an ecosystem. This review highlights the dynamic nature of taxonomy, with species being split and cryptic species eventually becoming morphologically distinguishable. It provides examples showing that relying solely on molecular methods without deep taxonomic expertise poses significant risks. It also aims to serve as a starting point for delving deeper into the taxonomy of the ICES zooplankton time series.more » « less
-
ABSTRACT DNA metabarcoding of zooplankton biodiversity is used increasingly for monitoring global ocean ecosystems, requiring comparable data from different research laboratories and ocean regions. The MetaZooGene Intercalibration Experiment (MZG‐ICE) was designed to examine1 and analyse patterns of variation of DNA sequence data resulting from multi‐gene metabarcoding of 10 zooplankton samples carried out by 10 research groups affiliated with the Scientific Committee for Ocean Research (SCOR). Aliquots of DNA extracted from the 10 zooplankton samples were distributed to MZG‐ICE groups for metabarcoding of four gene regions: V1‐V2, V4 and V9 of nuclear 18S rRNA and mitochondrial COI. Molecular protocols and procedures were recommended; substitutions were allowed as necessary. Resulting data were uploaded to a common repository for centralised statistics and bioinformatics. Based on proportional sequence numbers for abundant phyla, overall patterns of variation were consistent across many—but not all—MZG‐ICE groups. V9 showed highest similarity, followed (in order) by V4, V1‐V2, and COI. Outlier data were hypothesised to result from the use of different PCR protocols and sequencing platforms, and possible contamination. MZG‐ICE results indicated that DNA metabarcoding data from different laboratories and research groups can provide reliable, accurate and valid descriptions of biodiversity of zooplankton throughout the ocean. Recommendations included: pre‐screening QA/QC of raw data, detailed records for laboratory protocols, reagents, and instrumentation, and centralised bioinformatics and multivariate statistics. In the absence of universal agreement on standardised protocols or best practices, intercalibration is the best way forward toward validation of DNA metabarcoding of zooplankton diversity for global ocean monitoring.more » « less
-
Abstract Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.more » « less
An official website of the United States government
